2 Garis yang Saling Tegak Lurus. Gradien dari dua buah garis yang saling tegak lurus juga mempunyai hubungan. Hubungan dari dua buah garis itu dinyatakan, kalo gradien garis kedua yaitu lawan dari kebalikan gradien garis yang pertama. Atau dengan kata lain, juga bisa dikatakan kalo hasil dari perkalian 2 buah gradien tersebut sama dengan -1.
Pengertian Garis Sejajar, Garis Berpotongan, Tegak Lurus, dan Berimpit Sifat-sifat garis di bidang geometri ditentukan oleh kedudukannya terhadap garis lainnya, yang terdiri dari garis sejajar, garis berpotongan, garis tegak lurus, dan garis berimpit. Berikut akan dijelaskan ke-4 sifat kedudukan antar garis tersebut. Artikel terkait Pengertian Garis Titik Bidang dan Ruang beserta Contohnya A. Garis Sejajar Garis sejajar adalah suatu kedudukan dua garis pada bidang datar yang tidak mempunyai titik potong walaupun kedua garis diperpanjang. Secara geometri kesejajaran garis tidak akan pernah bertemu satu dengan lainnya karena mempunyai kemiringan gradien yang sama. Garis-garis sejajar tidak harus sama panjang. Contoh garis sejajar Garis AB dan CD merupakan contoh kedudukan sejajar, karena kedua garis tidak berpotongan walaupun garis diperpanjang Contoh garis tidak sejajar Gambar garis EF dan GH merupakan contoh garis tidak sejajar, karena ketika diperpanjang garis tersebut berpotongan B. Garis Berpotongan Garis berpotongan adalah kedudukan dua garis yang mempunyai titik potong karena kedua garis saling bertemu. Secara geometri garis-garis yang berpotongan terjadi karena mempunyai kemiringan yang berbeda dan panjang antar garis memungkinkan untuk saling bertemu. Garis yang berpotongan sudah pasti tidak sejajar, namun garis tidak sejajar belum tentu berpotongan. Contoh garis berpotongan Garis IJ dan KL merupakan garis berpotongan karena kedua garis saling bertemu dan menghasilkan suatu titik potong C. Garis Tegak Lurus Garis tegak lurus adalah kedudukan garis yang berpotongan dan pada titik potongnya terbentuk sudut siku-siku 90°. Garis tegak lurus juga disebut dengan garis serenjang atau garis perpendikular. Dalam simbol matematika garis tegak lurus disimbolkan dengan simbol perpendikular "⊥", misalnya garis MN tegak lurus dengan OP dapat ditulis MN ⊥ OP. Contoh garis tegak lurus Garis MN dan OP merupakan garis tegak lurus karena saling berpotongan dan titik potongnya membentuk sudut siku-siku Perkalian dua kemiringan gradien garis tegak lurus adalah -1 atau memenuhi persamaan M1 × M2 = -1. Jika, M1 = a/b maka M2 = - b/a * Karena berlaku M1 × M2 = a/b × - b/a = - ab/ab = -1 Contoh Kemiringan garis MN adalah M1 = 2/3, berapakah kemiringan garis OP di atas? Penyelesaian Karena garis OP ⊥ NM maka gradien garis OP = M2 dihitung memenuhi persamaan M1 × M2 = a/b × - b/a = -1 M1 = a/b = 2/3 a = 2 b = 3 M2 = - b/a = - 3/2 Jadi, gradien garis OP adalah - 3/2 D. Garis Berimpit Garis berimpit adalah kedudukan garis yang saling menutupi antara satu dengan lainnya, sehingga garis berimpit tidak dapat dilihat dengan kasat mata. Garis berimpit dapat terjadi karena posisi garis yang sama, namun 2 garis berimpit belum tentu mempunyai panjang yang sama. Contoh garis berimpit Garis a dan b merupakan garis berimpit karena kedua saling menutupi pada posisi yang sama Baca juga tutorial lainnya Daftar Isi Pelajaran Matematika Sekian artikel "Pengertian Garis Sejajar, Garis Berpotongan, Tegak Lurus, dan Berimpit". Nantikan artikel menarik lainnya dan mohon kesediaannya untuk share dan juga menyukai halaman Advernesia. Terima kasih…
- Он ибо ажоւօкυኒяյ
- Ψεրθ γ ኂեւθባኔφаж
- Жиհաтецор գωцէдեтըγፕ
- Иշεсл ፍኾ
- ከ ውжቂմէс елуцуփοκθб
- Իрупсалаδ хէձоժоኡօз тሮζሖй
ReportDiantara garis garis dengan persamaan berikut ini,manakah yang saling berhimpit atau saling berpotongana. y=3x + b dengan 6y=2x-12b. 12y-6=18 dengan 4x-8y=12 . angelinaoctavioy4j7p . Untuk saling berpotongan m1 tdk sma dgn m2 sedangkan saling berimpit m1= m2 dan c1=c2jadia. m1 = 3 m2 = 2/6=-1/3m1. m2 = 3 x -1/3 = -1 berarti ini tegak
Gradien adalah nilai yang menunjukkan kemiringan suatu garis. Simbol gradien biasanya dituliskan dengan huruf m. Cara menentukan gradien terdiri dari empat rumus yang dapat digunakan untuk menentukan nilai gradien dari suatu garis lurus. Empat rumus gradien tersebut digunakan untuk menentukan nilai kemiringan garis yang bisa diberikan dalam bentuk gambar, persamaan garis y = mx + c, persamaan garis Ax + By + C = 0, atau diketahui letak dua titik koordinat. Cara menentukan gradien garis yang diberikan dalam bentuk gambar akan berbeda cara menentukan gradien garis lurus yang diketahui persamaannya. Nilai gradien dapat berupa bilangan real positif atau negatif. Gradien dengan nilai positif menunjukkan garis lurus condong ke kanan. Gradien dengan nilai negatif menunjukkan garis lurus condong ke kiri. Bagaimana cara menentukan gradien dari persamaan Ax + By + C = 0? Bagaimana cara menentukan gradien garis lurus jika diketahui letak titik koordinatnya? Sobat idschool dapat mencari tahu bagaimana cara menentukan gradien garis lurus dengan cara-cara berikut. Table of ContentsNilai Gradien m Garis Lurus Cara Menentukan Gradien Garis Lurus1 Cara Menentukan Gradien dari Gambar2 Cara Menentukan Gradien dari Persamaan y = mx + c3 Cara Menentukan Gradien dari persamaan ax + by + c = 04 Cara Menentukan Gradien dari Dua Titik yang DiketahuiSifat Gradien Dari Dua GarisHubungan Nilai Gradien dari 2 Garis SejajarHubungan Nilai Gradien dari 2 Garis Saling Tegak LurusContoh Soal dan PembahasanContoh 1 – Contoh Soal Menentukan Gradien Contoh 2 – Gradien Grais Jika Diketahui Melalui 2 Titik Baca Juga Rumus Persamaan Garis Lurus Nilai Gradien m Garis Lurus Nilai gradien dari sebuah garis menyatakan perbandingan nilai satuan sumbu vertikal y per sumbu horizontal x pada bidang koordinat. Besar nilai gradien menunjukkan seberapa miring garis tersebut terhadap garis mendatar. Semakin besar nilai gradien berarti garis akan semakin tegak. Sebuah garis lurus yang sejajar dengan sumbu x memiliki nilai gradien sama dengan nol m = 0. Sedangkan untuk sebuah garis yang sejajar sumbu y memiliki nilai gradien sama dengan tak hingga m = ∞. Pada sebuah garis dengan persamaan y = x memiliki gradien m = 1. Nilai gradien positif menunjukkan bahwa garis condong ke kanan. Untuk garis dengan persamaan y = –x, nilai gradiennya adalah m = –1. Nilai gradien negatif menunjukkan bahwa garis condong ke kiri. Baca Juga Persamaan Garis yang Saling Sejajar Gradien dan suatu garis lurus dapat diketahui dengan empat cara berbeda. Keempat cara yang digunakan bergantung dari informasi atau keterangan yang diketahui. 1 Cara Menentukan Gradien dari Gambar Untuk garis lurus yang diberikan dalam bentuk gambar, pertama amati arah condong garisnya. Apakah garis condong ke kanan atau garis condong ke kiri. Jika garis condong ke kanan maka nilai gradiennya positif + Jika garis condong ke kiri maka nilai gradiennya negatif – Nilai gradien m dihitung dari perbandingan jarak sumbu y Δy dengan jarak sumbu x Δy dari perpotongan garis tegak/mendatar yang melalui garis lurus. Dua gambar di atas menunjukkan bagaimana cara menentukan nilai m gradien garis lurus yang diberikan dalam bentuk gambar. 2 Cara Menentukan Gradien dari Persamaan y = mx + c Persamaan garis yang diketahui dengan persamaan y = mx + c memiliki nilai gradien sama dengan m. Atau nilai gradiennya adalah besar koefisien x bilangan di depan x. Nilai koefisien x dapat bertanda positif atau negatif. Garis dengan gradien positif m > 0, jika digambar akan menghasilkan garis yang condong ke kanan. Garis dengan gradien negatif m < 0, jika digambar akan menghasilkan garis yang condong ke kiri. Sebagai contoh, sebuah garis lurus dinyatakan dalam persamaan y = 2x + 4. Maka gradien garis lurus tersebut adalah m = 2. Untuk garis lurus yang dinyatakan dalam persamaan qy = px + c, rumus gradien yang digunakan adalah koefisien x per koefisien y. Sehingga, gradien garis lurus qy = px + c adalah m = p/q. Gradien garis qy = px + c m = koef. xkoef. yGradien garis qy = px + c m = pq Sebagai contoh Diketahui sebuah garis memiliki persamaan 2y = 3x + 5. Gradien garis lurus tersebut adalah m = 3/5. Baca Juga Cara Mencari Persamaan Garis yang Saling Tegak Lurus 3 Cara Menentukan Gradien dari persamaan ax + by + c = 0 Bentuk persamaan garis juga dapat dinyatakan dalam persamaan Ax + By + C = 0. Nilai gradien garis yang dinyatakan dalam bentuk persamaan umum Ax + By + c = 0 adalah m = –A/B. Sebagai contoh, Sebuah garis lurus diketahui memiliki persamaan 3x + 2y – 6 = 0. Persamaan garis tersebut memiliki nilai A = 3 bilangan di depan x dan B = 2 bilangan di depan y. Jadi, gradien garis 3x + 2y – 6 = 0 adalah m = –A/B = –3/2 = –11/2 . 4 Cara Menentukan Gradien dari Dua Titik yang Diketahui Beberapa soal juga hanya memberikan informasi berupa dua titik yang dilalui garis. Misalkan diketahui garis yang melalui dua titik yaitu Px1, y1 dan Qx2, y2. Nilai gradien dari garis lurus yang melalui kedua titik tersebut dapat diketahui melalui persamaan di bawah. Bagaimana penggunaan rumus di atas untuk mencari nilai gradien dari garis lurus yang diketahui melalui 2 titik terdapat pada contoh 2 di bawah. Sifat Gradien Dari Dua Garis Dua buah garis dapat berkedudukan sebagai saling sejajar atau saling tegak lurus. Hubungan kedua garis tersebut dapat diketahui dari nilai gradiennya. Hubungan Nilai Gradien dari 2 Garis Sejajar Hubungan nilai gradien dari dua garis yang saling sejajar adalah sama. Misalkan diketahui dua buah garis sejajar yaitu garis g dan garis h. Diketahui gradien garis g adalah mg dan gradien garis h adalah mh. Hubungan nilai gradien antara garis g dan garis h adalah mg = mh. Hubungan Nilai Gradien dari 2 Garis Saling Tegak Lurus Hubungan nilai gradien dari dua garis yang saling tegak lurus adalah lawan kebalikan dari gradien garis lainnya. Atau dapat juga dinyatakan dalam persamaan hasil kali gradiennya sama dengan –1. Misalkan diketahui dua buah garis yaitu garis g dan garis h. Di mana garis g tegak lurus dengan garis h. Gradien garis g adalah mg, gradien garis h adalah mh. Hubungan nilai gradien garis g dan garis h adalah mg x mh = –1. Baca Juga Cara Mencari Persamaan Garis Lurus yang Melalui 2 Titik Contoh Soal dan Pembahasan Beberapa contoh soal di bawah dapat sobat idschool gunakan untuk menambah pemahaman bahasan di atas. Setiap contoh soal yang diberikan dilengkapi dengan pembahasannya. Sobat idschool dapat menggunakan pembahasan tersebut sebagai tolak ukur keberhasilan mengerjakan soal. Selamat Berlatih! Contoh 1 – Contoh Soal Menentukan Gradien Sebuah tangga bersandar pada dinding tembok seperti pada gambar. Kemiringan tangga terhadap dinding tembok adalah ….A. 4/3B. 5/4C. 4/5 D. 3/4 Pembahasan Rumus gradien garis lurus yang diberikan dalam gambar dicari tahu dengan mengamati kemana arah condong garis serta perbandingan sumbu vertikal y dan sumbu horizontal x. Untuk menentukan kemiringan tangga tersebut, kita perlu mencari tinggi tembok terlebih dahulu. Gunakan teorema Pythagoras untuk mencari tinggi tembok. Tangga condoh ke arah kanan, sehingga nilai gradien akan positif. Dari soal diperoleh bahwa jarak sumbu x horizontal adalah Δx = 6 m. Sementara jarak sumbu y vertikal belum diktahui. Jarak sumbu vertikal sama dengan jarak antara ujung tangga bagian atas sampai ke tanah Δy = tinggi tembok. Cara menghitung tinggi tembok dapat menggunakan rumus pytagoras seperti yang dilakukan pada langkah penyelesaian berikut. Dari hasil perhitungan diperoleh jarak sumbu y vertikal adalah Δy = 8 m. Jadi, kemiringan tangga terhadap dinding tembok adalah m = Δy/Δx = 8/6 = 4/3. Jawaban A Contoh 2 – Gradien Grais Jika Diketahui Melalui 2 Titik Gradien dari sebuah garis yang melalui titik P1, 3 dan Q5, 7 adalah ….A. 2B. 1C. 0D. –1 PembahasanUntuk mendapatkan nilai gradien dari dua titik yang diketahui, sobat idschool dapat menggunakan rumus gradien berikut. Jadi, gradien dari sebuah garis yang melalui titik P1, 3 dan Q5, 7 adalah m = 1. Jawaban B Demikianlah tadi ulasan bagaimana cara menentukan gradien garis lurus beserta contoh penggunaan rumus gradien. Terima kasih sudah mengunjungi idschooldotnet, semoga bermanfaat. Baca Juga Rumus Jarak Titik ke Garis
PersamaanGaris dan Gradien –Berikut adalah artikel sederhana tebtabf Persamaan Garis dan Gradien yang mungkin bias membantu Anda dalam hal pengertian dan langkahnya. Persamaan garis lurus dapat ditulis
Langkah 1Tulis kembali dalam bentuk perpotongan untuk lebih banyak langkah...Langkah perpotongan kemiringan adalah , di mana adalah gradiennya dan adalah perpotongan sumbu semua suku yang tidak mengandung ke sisi kanan dari untuk lebih banyak langkah...Langkah dari kedua sisi persamaan ke kedua sisi setiap suku pada dengan dan untuk lebih banyak langkah...Langkah setiap suku di dengan .Langkah sisi untuk lebih banyak langkah...Langkah faktor persekutuan dari .Ketuk untuk lebih banyak langkah...Langkah faktor sisi untuk lebih banyak langkah...Langkah setiap untuk lebih banyak langkah...Langkah dua nilai negatif menghasilkan nilai tanda negatif di depan
PersamaanGaris Lurus - Maze chase. 1) Diketahui persamaan garis y = 3x + 5 , tentukan gradien garis tersebut, kemudian tentukan gradien garis h yang sejajar dengan garis y = 3x + 5 a) 2 b) 3 c) 4 d) 5 2) Diketahui garis p tegak lurus dengan garis q. Jika gradien garis p adalah -4/5 tentukan gradien garis q a) 4/5 b) -4/5 c) 5/4 d) -5/4 3
Rumus Gradien adalah rumus yang di pakai untuk mengukur pada kemiringan suatu garis, Berikut ini akan kami jelaskan lengkap mengenai rumus gradien yang meliputi pengertian, rumus dan contoh soalnya Gradien disebut juga sebagai koefisien arah pada garis lurus dan dilambangkan huruf m.. Untuk lebih jelasnya simak pembahasan di bawah ini rumus gradien Gradien adalah nilai kemiringan pada suatu garis yang membandingkan antara komponen Y dengan komponen X Rumus Mencari Gradien Terdapat beberapa kondisi ataupun keadaan untuk mencari gradien garis, perhatika pembahasa berikut ini 1. Gradien Garis Melalui Titik Pusat 0,0 dan Titik x, y Diketahui bahwa persamaan garis yang melalui titik pusat 0,0 dan titik x, y adalah y = mx. Perhatikan contoh berikut ini. Mari kita bahas dengan soal dan pembahasannya Tentukanlah gradien persamaan garis melalui titik pusat dan titik 3, 5! Penyelesaian Persamaan garis melalui titik 0, 0 dan 3, 5 adalah y = 5/3x. Hingga gradiennya yaitu 5/3. Dari contoh soal tersebut bisa kita simpulkan bahwa gradien dari persaman garis y = mx adalah m. Kesimpulan perbandingan antara komponen y dengan komponen x pada tiap ruas garis adalah sama. Nilai perbandingan itu dinamakan gradien. Maka, persamaan garis y = mx mempunyai gradien m dengan m = y/x. 2. Gradien Garis Melalui Dua Buah Titik x1, y1 dan x2, y2 Tidak selalu bahwa sebuah garis tersebut melewati titik pusat 0,0. Jika suatu garis tidak melalui titik pusat 0,0, dapatkah kamu menentukan gradiennya? Mari kita bahas contoh soal dan pembahasannya Tentukanlah gradien persamaan garis melalui titik 6, 2 dan titik 3, 5! Penyelesaian x1 = 6; y1 = 2; x2 = 3; y2 = 5 Jadi, gradien persamaan garisnya adalah -1. Kesimpulan perbandingan komponen x dan komponen y untuk setiap ruas garis yaitu sama, yaitu 1. Bilangan 1 ini adalah gradien dari persamaan garis y = x + 2. Maka, persaman garis y = mx, c ≠ 0 mempunyai gradien m dengan; 3. Gradien Garis Sejajar Sumbu-x dan Sumbu-y Untuk mencari gradien garis yang sejajar sumbu-x dan gradien garis yang sejajar sumbu-y bisa memakai rumus berikut Perhatikan gambar berikut ini Garis o sejajar dengan sumbu-x dan garis n sejajar dengan sumbu-y. Pada gambar tersebut terlihat jelas bahwa garis o melalui titik -4, 2 dan 5, 2. Gradien garis o yaitu Maka, gradien garis sejajar sumbu-x adalah 0. Perhatikan garis n di bawah ini! Garis n melalui titik 4, 8 dan 4, -5. Gradien garis n yaitu m = –5 – 84 – 4 = 13/0 = tidak didefinisikan. Maka, gradien garis sejajar sumbu-y tidak didefinisikan. 4. Gradien Garis Yang Saling Sejajar Gradien garis sejajar sumbu-x yaitu 0. Bagaimana dengan gradien dengan dua buah garis yang sejajar seperti terlihat pada gambar berikut? Perhatikan gambar tersebut, lalu kemudian lakukan kegiatan di bawah ini guna mencari gradien garis yang sejajar. Apa yang bisa di simpulkan berdasarkan kegiatan itu ? Carilah gradien ruas garis AB, PQ, MN, dan RS pada gambar tersebut dengan melengkapi titik-titik berikut ini! • Titik A 1, 4 ; B 6, 11 Gradien AB = 11 – 46 – 1 = 7/5 • Titik P 2,2 ; Q 7,9 Gradien PQ = 9 – 27 – 2 = 7/5 • Titik M 6,3; N 11,10 Gradien MN = 10 – 311–6 = 7/5 • Titik R 1,4; S 6,11 Gradien RS = 11 – 76 – 1 = 7/5 Maka, gradien garis AB = PQ = MN = RS = 7/5 . 5. Gradien Garis Saling Tegak Lurus Selain kedudukan 2 buah garis sejajar, ada juga kedudukan 2 garis yang saling tegak lurus. Bagaimana gradien garis yang tegak lurus? Apakah gradiennya sama? Gradien 2 buah garis yang tegak lurus jika dikalikan hasilnya sama dengan –1. Maka, jika l adalah sebuah garis tegak lurus dengan garis p maka berlaku ml × mp = –1. Untuk memudahkan dala pemahaman, sima beberapa contoh soal dibawah ini Soal Tentukanlah gradien dari persamaan garis berikut ini a y = 3x + 2 b 10x − 6y + 3 = 0 Jawab a y = 3x + 2 Pola persamaan garis pada soal a adalah y = mx + C Hingga mudah menemukan gradien garisnya m = 3 b 18x − 6y + 24 = 0 Ubah persamaan b jadi pola y = mx + c 18x − 6y + 24 = 0 18x + 24 = 6y 6y = 18x + 24 bagi dengan 6 y = 3x + 4 hingga m = 3 Soal No. 2 Tentukanlah persamaan garis melalui titik 3, 1 dan tegak lurus dengan garis y = 2x + 5 Jawab 2 garis saling tegak lurus jika memenuhi syarat maka sebagai berikut m1 ⋅ m2 = −1 y = 2x + 5 mempunyai gradien m1 = 2, hingga garis yang dicari persamaannya harus mempunyai gradien m1 ⋅ m2 = −1 2 ⋅ m2 = −1 m2 = − 1/2 Susun persamaan garisnya y − y1 = mx − x1 y − 1 = 1/2x − 3 y − 1 = 1/2 x − 3/2 y = 1/2 x − 3/2 + 1 y = 1/2 x − 1/2 Soal No. 3 Tentukanlah persamaan garis yang melewati titik 3, 1 dan sejajar garis y = 2x + 5 Jawab 2 garis yang sejajar mempunyai syarat gradiennya harus sama atau m1 = m2 Gradien garis y = 2x + 5 yaitu 2 Hingga gradien garis yang dicari juga 2 sebab mereka sejajar. Hingga y − y1 = mx − x1 y − 1 = 2 x − 3 = 2x − 6 y = 2x − 6 + 1 y = 2x − 5 Soal No. 4 Garis p mempunyai persamaan y = 2x + 5 Tentukanlah persamaan garis yang didapat dengan a menggeser garis p keatas sebanyak 3 satuan b menggeser garis p kebawah sebanyak 3 satuan Jawab Pergeseran garis ke atas dan ke bawah. y = 2x + 5 a digeser keatas 3 satuan menjadi y = 2x + 5 + 3 y = 2x + 8 b digeser kebawah 3 satuan y = 2x + 5 − 3 y = 2x + 2 Soal No. 5 Garis m mempunyai persamaan y = 2x + 10 Tentukanlah persamaan garis yang didapatkan a menggeser garis m ke arah kanan sebanyak 3 satuan b menggeser garis m ke arah kiri sebanyak 3 satuan Jawab Pergeseran garis ke kanan dan ke kiri. y = 2x + 10 a digeser ke kanan 3 satuan y = 2x − 3 + 10 y = 2x − 6 + 10 y = 2x + 4 b digeser ke kiri 3 satuan y = 2x + 3 + 10 y = 2x + 6 + 10 y = 2x + 16 Demikianlah pembahasan mengenai gradien, Semoga bermanfaat Artikel Terkait Persamaan Garis Lurus Rumus Barisan Geometri dan Deret Geometri Matematika
Garissinggung 1 : y = - 2x + 5√5. Garis singgung 2 : y = - 2x - 5√5. Contoh Soal 2 : Tentukan persamaan garis singgung lingkaran x + y = 25 yang sejajar garis y = 2x + 3. 1. Identifikasi masalah. - x² + y² = 25 ( merupakan persamaan lingkaran), maka didapatkan sebuah lingkaran dengan titik pusat (0,0) dan jari-jari 5.
MatematikaALJABAR Kelas 8 SMPPERSAMAAN GARIS LURUSGradien KemiringanGradien yang tegak lurus dengan garis garis 3x + 5y + 20 = 0 adalah A. -5/3 C. 3/5 B. -3/5 D. 5/3Gradien KemiringanPERSAMAAN GARIS LURUSALJABARMatematikaRekomendasi video solusi lainnya0221Garis k menyinggung grafik fungsi gx=3x^2-z+6 di titi...0130Gradien garis yang melalui titik A2, -3 dan B4, 1 adalah0311Gradien garis singgung sebuah kurva pada setiap titik din...Teks videojika kita diminta untuk menentukan gradien garis yang tegak lurus dengan suatu persamaan garis jika persamaan garisnya adalah a x ditambah b y + c = 0 maka gradien garis ini adalah minus a per B dan hubungan antara dua garis yang saling tegak lurus yaitu m1 * m2 = minus 1 sehingga untuk x + 5 y + 20 sama dengan nol berarti gradien garis di sini adalah minus 3 per 5 maka untuk menentukan gradien garis yang lain maka kita tentukan m1 * m2 = min 1 berarti minus 3 per 5 x gradiennya tersebut gradien garis kedua M2 = minus 1 maka M2 nya minus 1 minus 35 kita pindahkan menjadi minus 5 per 3 min dengan minus menjadi plus berarti M2 nya = 5 per 3 maka pilihan yang sesuai di sini adalah Dek sampai jumpa di pertanyaan berikutnya
TentukanPersamaan Apapun yang Tegak Lurus dengan Garis 2x-3y-6=0. 2x − 3y − 6 = 0 2 x - 3 y - 6 = 0. Pilih titik yang akan dilewati garis tegak lurus. (0,0) ( 0, 0) Selesaikan y = 2x 3 −2 y = 2 x 3 - 2. Tekan untuk lebih banyak langkah Pindahkan semua bilangan yang tidak mengandung y y ke ruas kanan dari persamaan.
Pada artikel Matematika kelas 8 ini, kamu akan mempelajari cara mencari kemiringan gradien dari sebuah garis lurus disertai dengan masing-masing contoh soalnya. — Siapa yang pernah naik pesawat terbang? Tahukah kamu saat pesawat lepas landas take off atau ingin mendarat landing, pesawat memerlukan kemiringan tertentu agar bisa terbang atau tiba di landasan dengan sempurna. Nah, salah satu perhitungan matematika yang dapat diaplikasikan dalam menentukan kemiringan badan pesawat saat lepas landas atau mendarat akan kita bahas pada artikel kali ini. So, stay tuned, ya! Coba deh kamu perhatikan gambar di atas. Jika kita anggap lintasan yang dilalui pesawat adalah suatu garis lurus, maka saat pesawat bergerak menuju udara, pesawat akan berjalan lurus ke atas dengan kemiringan tertentu. Begitu juga saat pesawat kembali menuju darat. Nah, kemiringan pada garis lurus ini dalam matematika disebut dengan gradien. “Gradien adalah nilai yang menunjukkan kemiringan/kecondongan suatu garis lurus”. Umumnya, gradien disimbolkan dengan huruf “m”. Gradien akan menentukan seberapa miring suatu garis pada koordinat kartesius. Gradien suatu garis dapat miring ke kanan, miring ke kiri, curam, ataupun landai, tergantung dari nilai komponen X dan komponen Y nya. Contoh macam-macam kemiringan gradien pada garis lurus dapat kamu lihat melalui gambar di bawah ini “Garis yang gradiennya positif akan miring ke kanan, sedangkan garis yang gradiennya negatif akan miring ke kiri”. Sekarang, kita coba cari tahu yuk mana garis yang gradiennya positif dan mana garis yang gradiennya negatif. Pada gambar nomor 1, ternyata garisnya miring ke kanan, sehingga dapat diketahui kalau gradiennya akan bernilai positif. Sementara itu, pada gambar nomor 4, garisnya miring ke kiri, sehingga gradiennya akan bernilai negatif. Nah, kalau gambar nomor 2 dan 3, garisnya miring ke mana, ya? Kira-kira, gradiennya bernilai positif atau negatif? Hayoo… ada yang tau? Baca Juga Bagaimana Ya Cara Menentukan Persamaan Garis Lurus? Oke, setelah kita mengetahui apa itu gradien suatu garis, materi yang akan kita bahas selanjutnya adalah bagaimana cara mencari nilai gradien tersebut. Wah, penasaran nggak, sih? Kalau gitu, langsung saja yuk kita simak! Terdapat dua cara untuk mencari nilai gradien suatu garis yang bisa kamu ketahui, yaitu 1. Jika diketahui bentuk persamaan garisnya Secara umum, bentuk persamaan garis lurus ada dua macam, sehingga cara untuk menentukan gradiennya juga berbeda beda, tergantung dari bentuk persamaan garisnya. a. Persamaan garis y = mx + c Pada persamaan garis ini, gradien dapat dicari dengan mudah. Kenapa? Karena gradiennya adalah koefisien dari variabel x itu sendiri, yaitu m. Contoh Garis y = 3x + 2, koefisien x adalah 3. Jadi, gradien garis tersebut adalah 3. Garis y = -2x + 8, koefisien x adalah -2. Jadi, gradien garis tersebut adalah -2. b. Persamaan garis ax + by + c = 0 Jika diketahui persamaan garis ax + by + c = 0, maka langkah pertama yang harus kamu lakukan adalah ubah persamaan garis tersebut ke bentuk y = mx + c, dengan m adalah gradien garis tersebut. Di sini, kamu harus perhatikan tanda +/- dari koefisien masing-masing variabelnya, ya. Soalnya, tanda +/- akan berubah ketika kita pindah ruas persamaannya. Nah, kalau kamu merasa bingung, coba perhatikan contoh soal di bawah ini, ya. Contoh 1. Hitunglah kemiringan gradien pada persamaan garis berikut a 5x + 2y – 8 = 0 b 2x – 3y = 7 Penyelesaian a Pertama-tama, kita ubah dulu persamaan 5x + 2y – 8 = 0 ke bentuk y = mx + c, sehingga persamaannya menjadi, 5x + 2y – 8 = 0 2y = -5x + 8 Koefisien x bernilai positif, yaitu 5, sehingga setelah kita pindah ruas ke kanan akan bernilai negatif. Begitu juga dengan konstanta -8 yang berubah tanda menjadi 8 karena pindah ruas ke kanan. Selanjutnya, kita bagi kedua ruas dengan 2. y = -5/2x + 4 Jadi, gradien dari persamaan garis tersebut adalah -5/2. Gimana? Kamu paham nggak sampai sini? Oke, supaya kamu semakin paham, coba kamu kerjakan contoh poin b. Terus, jawabannya kamu share deh di kolom komentar. Ditunggu ya jawabannya! 2. Jika diketahui dua titik yang dilalui garis Jika diketahui dua titik yang dilalui suatu garis lurus, misalnya x1,y1 dan x2,y2, maka gradiennya dapat diperoleh dengan rumus m = y/x = y2-y1/x2-x1. Contoh soalnya seperti ini. Contoh Perhatikan gambar berikut Gradien garis k pada gambar adalah… Penyelesaian Diketahui dua buah titik yang dilalui oleh garis k, yaitu 4,0 dan 0,6. Misalnya kita pilih x1,y1 = 4,0 dan x2,y2 = 0,6, gradien garis tersebut dapat dicari menggunakan rumus m = y/x = y2-y1/x2-x1. Jadi, gradien garis tersebut adalah -3/2. Di sini kamu bebas untuk memilih titik mana yang jadi x1,y1 dan titik mana yang jadi x2,y2 ya karena hasilnya akan sama saja. Baca Juga Belajar Sistem Koordinat Kartesius dan Cara Membuat Grafiknya, Yuk! Wah, ternyata mudah ya untuk mencari kemiringan suatu garis? Rumusnya juga simpel lagi. Nah, untuk lebih memudahkan kamu dalam mengerjakan soal-soal tentang gradien, artikel ini sudah merangkup rumus-rumus di atas tadi, lho. Tapi ingat, kamu jangan hanya hafal rumus-rumusnya saja, ya. Kamu juga harus pahami konsepnya. Caranya gimana? Kamu bisa identifikasi soalnya, apakah di soal diketahui persamaannya saja atau diketahui dua titik yang dilalui persamaan garis itu. Biasanya sih, untuk cara nomor dua, soal yang disediakan berupa gambar grafik. Setelah itu, baru deh kamu bisa gunakan rumus-rumus yang sudah dijelaskan sebelumnya. Cara mencari kemiringan gradien suatu garis lurus banyak sekali diterapkan untuk menyelesaikan berbagai masalah dalam kehidupan sehari-hari, lho. Salah satunya, seperti yang sudah disebutkan di awal tadi, yaitu untuk memperhitungkan kemiringan badan pesawat saat lepas landas maupun mendarat. Bayangkan saja jika pilot tidak memperhitungkan kemiringan pesawat saat ingin mendarat, pasti jadinya bakal kayak gini, Hiiiiiiyyy… serem banget, kan! sumber Jadi, nggak ada alasan lagi buat kamu untuk malas belajar matematika dengan bilang kalau rumus matematika nggak ada manfaatnya sama sekali. Trust me, setiap ilmu yang kamu pelajari pasti ada manfaatnya! Oke, kita masuk ke materi yang terakhir ya, yaitu hubungan antara dua garis lurus. Hubungan dua garis lurus ini juga sangat penting untuk kamu ketahui karena biasanya untuk mencari gradien suatu garis akan bergantung dengan garis yang lain. Gimana sih maksudnya? Untuk lebih jelasnya, coba kamu perhatikan gambar di bawah ini! Baca Juga Cara Mencari Rumus Pola Bilangan dan Contohnya, Pelajari Yuk! Yuhuu… selesai sudah materi kita kali ini. Apakah kamu sudah paham tentang bagaimana cara mencari gradien garis lurus? Jika kamu ada pertanyaan, jangan ragu untuk menuliskannya di kolom komentar, ya. Nah, kalau menurutmu materi ini kurang lengkap, kamu bisa lho belajar lebih dalam lagi di ruangbelajar. Selamat belajar, selamat meraih mimpi! Referensi As’ari Tohir M, Valentino E, Imron Z, Taufiq I. 2017 Matematika SMP/MTs Kelas VIII Semester 1. Jakarta Kementerian Pendidikan dan Kebudayaan Artikel diperbarui pada 11 November 2022.
. 453 167 368 238 231 461 327 250
gradien garis yang tegak lurus dengan garis